
Music is scaled, while speech is not: 
A cross-cultural analysis
Elizabeth Phillips & Steven Brown

Music is well-known to be based on sets of discrete pitches that are combined to form musical 
melodies. In contrast, there is no evidence that speech is organized into stable tonal structures 
analogous to musical scales. In the current study, we developed a new computational method for 
measuring what we call the “scaledness” of an acoustic sample and applied it to three cross-cultural 
ethnographic corpora of speech, song, and/or instrumental music (n = 1696 samples). The results 
confirmed the established notion that music is significantly more scaled than speech, but they also 
revealed some novel findings. First, highly prosodic speech—such as a mother talking to a baby—was 
no more scaled than regular speech, which contradicts intuitive notions that prosodic speech is more 
“tonal” than regular speech. Second, instrumental music was far more scaled than vocal music, in 
keeping with the observation that the voice is highly imprecise at pitch production. Finally, singing 
style had a significant impact on the scaledness of song, creating a spectrum from chanted styles to 
more melodious styles. Overall, the results reveal that speech shows minimal scaledness no matter 
how it is uttered, and that music’s scaledness varies widely depending on its manner of production.

One of the hallmark features of music is that it is a combinatorial system that uses sets of discrete pitches as its 
building blocks1–6. Such pitch-sets are referred to as musical scales and are typically comprised of 5–7 pitches 
per octave, which get combined to form musical melodies. The composition of scales varies both between and 
within cultures, leading to a remarkable degree of musical diversity globally7–10, although the use of a scale 
itself is a statistical universal11. Since scales are ubiquitous in vocal music, one might ask whether this same 
organizing principle applies to speech. While individual syllables in speech are often associated with particular 
pitches—sometimes fairly discrete pitches6,12—there is no evidence that the collection of pitches across the 
syllables of an utterance comprise a fixed set of recurring tones akin to a musical scale. While speech is indeed 
melodious—rather than being purely monotonic—its melodies follow general pitch contours or basic intonation 
patterns, rather than scales with fixed musical intervals13–15. For this reason, we introduce the concept of pitch 
“scaledness” in this article in order to distinguish it from the common concept of pitch “discreteness,” since the 
latter may be applied to not just melodies as a whole, but to individual pitches (i.e., their degree of flatness). Our 
focus is on the recurrent use of scaled pitches across an audio sample.

Speech and music, despite their different principles for organizing pitch, find a universal coupling in the form 
of songs with words, which are vocalizations in which people sing their linguistic utterances, rather than speak 
them in the typical manner of conversational speech. Hence, the melodies of these utterances employ scales 
and sound like musical melodies, just like instrumental music. Sung speech is distinct from another form of 
singing in which the syllabic carriers for pitch are not meaningful words but are instead “vocables” (i.e., nonsense 
syllables)7,16. Such vocable singing occurs, for example, when people sing a melody using la-la-la. Figure 1 shows 
an overall picture of the relationship between speech and music, where sung speech comprises a joint function 
in which words and music are combined with one another, creating composite utterances in which the melody 
of the speech is musical17–20. At the far left side of the figure are purely linguistic forms of speech that do not 
involve musical scales, and at the far right side are purely musical forms that do not involve words, namely 
vocable singing and instrumental music. The arrow at the bottom of the figure depicts a predicted continuum 
of scaledness, i.e., tonal structure arising from the use of a recurrent set of pitches. This continuum spans from 
standard speech to sung speech to instrumental music.

Figure  1 presents further distinctions for both speech and sung speech with regard to the scaledness 
continuum. First, prosodic forms of speech are typically considered to be more “musical” than standard speech. 
This applies to the way that a parent talks to an infant21–25 or that a professional actor or orator declaims their 
utterances during a public performance26. This accentuated manner of speaking is not only louder and slower 
than standard conversational speech27,28, but is also higher-pitched and wider in range23, involving the use of 
large pitch contours. For example, a mother saying “You’re such a gooood girl” to her baby would not only utter 
the phrase in a higher-than-normal register, but would likely put an exaggerated pitch-contour on the focus-
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word good24. The evolutionary theorist Herbert Spencer, in his 1857 essay The Origin and Function of Music29, 
proposed that, during the course of human evolution, singing (and hence music) evolved from a prosodic 
accentuation of speaking during times of heightened emotion. As he wrote: “While calm speech is comparatively 
monotonous, emotion makes use of fifths, octaves, and even wider intervals” (p. 399) and “what we regard as the 
distinctive traits of song are simply the traits of emotional speech intensified and systematized” (p. 402)29. These 
ideas formed the basis of Spencer’s “speech theory” of the origins of music. Darwin’s evolutionary theory of 
music30 posited the reverse progression, claiming that speech evolved from a primitive form of hominin singing. 
However, Darwin’s conception of singing was not well-specified in his writings, and included very non-scaled 
vocalizations like the territorial calls of gibbon apes. In other words, Darwin did not distinguish scaledness from 
prosodic accentuation.

The musicologist Curt Sachs presented a compromise position7 by arguing that song had not one but two 
origins, one in music itself and the other in speech. He referred to the former style as melogenic (i.e., born from 
melody) and latter style as logogenic (i.e., born from words). This dual-origins model parallels an important 
distinction in ethnomusicology between different manners of singing17. This is shown in Fig. 1 as a distinction 
between a more “sung” style that adheres to a musical scale and a more “chanted” style that places a greater 
emphasis on the text. In the continuum shown in Fig. 1, the chanted (logogenic) style is presumed to have a lower 
scaledness than the sung (melogenic) style, since it is more speech-like. This intermediacy of chanted speech is 
mentioned by Spencer as well: “recitative, or musical recitation, is in all respects intermediate between speech 
and song” (p. 402)29. One implication of Sachs’ theory is that the scaledness of song should vary with the manner 
of production (e.g., chanted vs. sung). Additionally, our previous work has suggested that the scaledness of vocal 
music should differ from that of instrumental music. We have demonstrated that the voice is an imprecise pitch-
generating device, especially compared to musical instruments that can be engineered to produce highly precise 
pitches and thus musical scales31. Hence, the scaledness continuum shown in Figure 1 indicates that vocal music 
should be less scaled than instrumental music, even when producing the same melodic material.

It is important to note that scaledness is not the same thing as “pitch discreteness”32–34, which measures the 
degree to which melodic notes are comprised of a stable pitch curve with clear onsets and offsets. Scaledness 
is instead an indicator of pitch-class discreteness, since it ignores how a melody unfolds over time, and instead 
measures how well the overall pitch of the audio clusters into stable scale degrees. Although scaledness is a 
measure of the overall tonal structure of a sample, it is not the same thing as the tonality measures (such as key 
strength) used in most automatic music information retrieval packages, such as MIRtoolbox. These measures 
are typically calculated by matching the pitch chromagram—which is a representation of pitch relying on 
octave equivalence—to an existing Western music-theoretic template, such as the Krumhansl-Schmuckler pitch 
profile35,36. Many speech/music classifiers operate based on the assumption that music-theoretic features do not 
apply to speech37. However, we cannot assume that such features obligatorily apply to the music of non-Western 
cultures. Scaledness is thus a culturally unbiased and more fundamental measure of a sample’s underlying pitch 
structure.

In the present study, we present a new computational method for measuring the overall scaledness of an 
acoustic sample. Briefly, the method involves automatically clustering the pitches of the sample and taking the 
best solution’s silhouette score, which captures both the average flatness of the clusters (i.e., the extent to which 
pitches within a class are similar) and the average steppiness between clusters (i.e., the extent to which pitch-

Fig. 1.  The scaledness continuum from speech to sung speech to instrumental music. Speech and music can 
be either separate from one another or they can be combined to create composite forms of sung speech. Speech 
itself can be produced in either the standard manner of adult conversation or in a more prosodic manner, such 
as the style of a stage actor. Sung speech can be produced in either a chanted manner than is relatively speech-
like or in a more musical manner that is sung with high pitch-precision. The arrow along the bottom depicts a 
presumed continuum of scaledness from pure speech to sung speech to pure music. Along the top of the figure 
are depicted Spencer’s (1857) “speech theory” of the origins of song/music and Sachs’ (1943) dual-origins 
model of the origins of song. Note that the spacing between forms is only approximate and that the figure is 
not meant to make quantitative predictions.

 

Scientific Reports |        (2025) 15:20855 2| https://doi.org/10.1038/s41598-025-03049-w

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


classes are spaced apart). We tested this measurement by applying it to a set of 1696 acoustic samples from across 
three cross-cultural ethnographic corpora containing samples of speech, song, and/or instrumental music. We 
formulated a number of predictions for the study. The most general prediction was that music would be shown 
to be more scaled than speech. Likewise, based on our previous work on the imprecision of the voice as a 
pitch-generating instrument, we predicted that instrumental music would be more scaled than vocal music (i.e., 
song). Next, we predicted that, within the realm of speech itself, prosodic speech (e.g., infant-directed speech) 
would reveal a greater level of scaledness than standard speech (e.g., speech among adults). In tandem, we 
predicted that speech produced using a tonal language would show greater scaledness than speech uttered using 
a nontonal language. Finally, with regards to singing, we explored Sachs’ distinction between a more melodious 
(or melogenic) style of singing and a more chanted (or logogenic) style, and predicted that melodious singing 
would show a greater degree of scaledness than chanting. Along similar lines, we predicted that, within the realm 
of vocal music, songs produced with greater pitch-class imprecision by the singer31 would show lower degrees 
of scaledness. We first tested these predictions using descriptive statistics, and then used predictive classification 
to investigate if scaledness was sufficiently informative to correctly classify samples along the speech-music 
continuum.

Results
Descriptive analysis
Figure 2 shows the mean silhouette values for each of the three corpora and their component categories. In 
keeping with the principal hypothesis of the study, song showed a significantly higher scaledness value than 
speech. This result was observed by comparing the Song and Speech categories within Hilton-Mehr, and by 
comparing Song to both Described and Recited speech within Ozaki-Savage. Another predicted result was that 
instrumental music showed a significantly higher scaledness value than song, as seen within the Ozaki-Savage 
dataset. In fact, this was the single largest category difference in the entire dataset. An unexpected finding was 
that prosodic speech showed barely any difference from standard speech, despite intuitions that prosodic speech 
is more “musical” than regular speech. This was seen in the comparison between Infant- and Adult-directed 
speech within Hilton-Mehr (which was non-significant), and between Described and Recited speech within 

Fig. 2.  Scaledness values across the three corpora, shown as violin plots. The violin plots are color-coded 
for overall category as per Fig. 1. The outer colored plot presents a mirrored kernel density estimation (i.e., a 
smoothed histogram of the data distribution). The inner boxplot presents the median as a horizontal line, the 
interquartile range (IQR; 25th and 75th percentiles) as a box, and whiskers that extend to the maximum and 
minimum values (excluding outliers further than 1.5× the IQR from the 25th or 75th percentiles). Statistical 
comparisons within each corpus are *p < 0.05, **p < 0.01, ***p < 0.001.
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Ozaki-Savage (which was significant, although extremely small; see Extended Data Fig. 3 for visualizations of 
the pairwise differences between means).

The consistently low scaledness values across speech types was further supported by the analysis of language 
tonality, as shown in Fig. 3. When the vocal samples in Hilton-Mehr and Ozaki-Savage were sorted according to 
language categories, there was no significant difference in scaledness between the tonal and nontonal language 
types. In addition, there was no significant interaction between language tonality and utterance type in either 
dataset that could not be fully accounted for by the main effect of type, namely song vs. speech. However, this 
analysis may have been limited by the small n of some groups.

In contrast to these null differences for the manners of speaking, we found significant differences among 
many of the various manners of singing in the Phillips-Brown corpus, the categorization of which is detailed 
in Extended Data Table 1. The right-most panel in Fig.  2 shows an ascending gradient of silhouette values, 
spanning from the chanted (logogenic) styles to the sung (melogenic) styles. The melodious logogenic style 
was an intermediate category, combining a chanted style of vocalizing words with extensive movement along a 
musical scale.

For the Phillips-Brown dataset, we also investigated correlations between scaledness and other vocal 
properties at the per-song level (Fig. 4). The correlation between scaledness and the number of scale tones was 
not significant (r = 0.08, t = 1.58, df = 414, p > 0.1), indicating that our measure of scaledness is not confounded 
by scale size. However, there were small but significant correlations between scaledness and the mean step-size 
between scale tones (r = 0.20, t = 4.19, df = 413, p < 0.001), as well as with the number of different of step-sizes in 
scales (r = 0.19, t = 3.95, df = 414, p < 0.001), suggesting that some aspects of scale structure do indirectly impact 
scale discreteness, as one might expect. As per our prediction, we observed a significant negative correlation 
between scaledness and vocal imprecision (r =  − 0.29, t =  − 6.15, df = 406, p < 0.001), suggesting that the more 
imprecise the production, the less discrete the scale.

Finally, a combined analysis across the three corpora revealed a mean scaledness value of 0.66 across all 
samples (n = 1696, sd = 0.08). The mean values were 0.59 for speech, 0.69 for song, and 0.89 for instrumental 
music. The differences among these categories were all significant (df = 2, F-value = 1174, p < 0.001). A further 
combined analysis that distinguished standard speech (Adult-directed and Descriptive) from prosodic speech 
(Infant-directed and Recited) yielded a small but significant difference between these two categories, although 
they both differed significantly from both song and instrumental music. Nearly the entire scaledness continuum 

Fig. 3.  Scaledness values across language categories with regard to their use of lexical tone. Silhouette values 
are shown for the Hilton-Mehr corpus (left) and the vocal samples of the Ozaki-Savage corpus (right). The 
languages are classified as either nontonal (●), simple tonal (▼), complex tonal (■), or unknown (▲). The 
mean for each language type is shown with a gold + and written above. The mean for each utterance type 
is shown with a dashed line. Speech samples are shown in blue, and song samples in purple. There were no 
significant differences among language classes that were not driven by utterance type (i.e., speech vs. song).
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(0.5–1.0; see Discussion) is spanned by these categories, with some overlap at the tail ends of their distributions 
(see Extended Data Fig. 2).

Predictive analysis
The model using scaledness as the sole predictor to classify the Hilton-Mehr dataset into the 4 categories 
specified by the authors (see Fig. 2) achieved an accuracy of 43.6% (one-sided p-value [Accuracy (Acc) > No 
information rate (NIR)] < 0.001) with an Akaike Information Criteria (AIC) value of 564.2 (Table 1). The most 
common sources of error were confusions between the speech categories (Infant- vs. Adult-directed; 29% of 
errors) and the song categories (Infant- vs. Adult-directed; 32%), although confusions between Infant-directed 
speech and Adult-directed song were also prevalent (16%). We attempted a simplified post-hoc classification 
into the 2 categories of “speech” (Infant- and Adult-directed) and “song” (Infant- and Adult-directed). This 
model achieved an accuracy of 78.8% (one-sided p-value [Acc > NIR] < 0.001), where speech was slightly more 
likely to be misclassified as song (60% of errors) than the reverse. The AIC of the simplified model was 188.95, 
and so it is taken as the better model.

The model classifying the Ozaki-Savage dataset into the 4 categories specified by the authors achieved an 
accuracy of 73.9% (one-sided p-value [Acc > NIR] < 0.001) with an AIC of 78.6. The most common source 
of error was confusion between Described and Recited speech (61%). We attempted a simplified post-hoc 
classification into the 3 categories of “speech” (Described and Recited), “song,” and “instrument.” This model 
achieved an accuracy of 91.3% (one-sided p-value [Acc > NIR] < 0.001) and an AIC of 41.3. Interestingly, the 
most common source of error was confusion between song and instrumental music (67%). The simplified model 
was taken as the better model.

The model classifying the Phillips-Brown dataset into the 5 categories of song described in this article 
(Extended Data Table 1) only achieved an accuracy of 42.2% (one-sided p-value [Acc > NIR] = 0.24) and an AIC 
of 268.3. This is not surprising given that this analysis was restricted to song alone, with its relatively small range 
of silhouette values. The most common source of error was confusion between Melogenic song and Motivic song 
(59%)—which were the most prevalent song-types in the corpus—although Repetition Chant also caused some 
errors. Given the high NIR resulting from the very unbalanced groups, we did not attempt any post-hoc models 
for this dataset.

Fig. 4.  The relationship between scaledness and other scale or singing features. The graphs show the 
relationship between scaledness and (a) number of tones in a scale, (b) the mean step-size in a scale, (c) the 
number of different step-sizes in a scale, and (d) the degree of vocal imprecision in production (in cents). 
The data are based on the Phillips-Brown corpus and the results in Phillips and Brown31 and Brown et al. 
(submitted). The shaded blue line in each graph is the line of best fit with 95% CIs. ***p < 0.001.
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The model classifying the entire dataset into 3 categories (“speech,” “song,” and “instrumental”) achieved 
an accuracy of 86.1% (one-sided p-value [Acc > NIR] < 0.001), with an AIC of 291.2. The most common source 
of error was confusion between speech and song (93%), with misclassification of song as speech being more 
common than the reverse. When “prosodic speech” (Infant-directed and Recited) was introduced as a fourth 
category, the accuracy dropped to 73.8% (one-sided p-value [Acc > NIR] < 0.001) and the AIC rose to 515.7. The 
most common source of error was confusion between speech and prosodic speech (39%), although both were 
also confused with song. The larger AIC indicated that the added complexity of this model was not preferable. 
Overall, the 3-way classification of the samples into speech, song, and instrumental music gave the strongest 
classification accuracy, both within and across corpora, suggesting that these are fundamental categories of 
scaledness.

Discussion
In the current study, we developed a new means of measuring the scaledness of an acoustic sample, as separate 
both from Western-theoretic frameworks for tonality and from the “discreteness” of individual pitches. Using 
this metric of scaledness, we were able verify the longstanding notion that music is overall more scaled than 
speech. However, we did not validate the notion that prosodic speech is more scaled than conversational speech, 
or that tone-language speech is more scaled than speech produced using an intonation language. In contrast to 
these null differences for styles of speaking, we demonstrated large variation in the scaledness of music, with 
instrumental music being far more scaled than vocal music (even when controlling for the musical material), and 
melodious singing being somewhat more scaled than chanting. Overall, we observed that scaledness increased 
significantly from speech to song to instrumental music, demonstrating marked differences not only between 
vocal and instrumental music, but between vocal music and speech.

Low variation in scaledness across manners of speaking
Our focus on scaledness, rather than the more standard concept of “discreteness,” clarifies an important point 
about the acoustic nature of speech: speech shows pitch discreteness at the level of individual syllables, but not at 
the level of phrasal melodies. There is good evidence that speech is discrete at the level of individual syllables6,12. 
While contoured syllables exist as well (e.g., rising tones, falling tones), there are also many relatively flat tones 
in speech. However, this does not make speech ”tonal” in the musical sense, since speech does not make use of a 
limited set of recurrent pitch-classes in the way that music does. Even so-called tonal languages that make use of 
lexical tones do not align these tones to a fixed scale. Hence, they lack tonality in the musical sense, as Chow and 
Brown have previously claimed12. When tone-language speech is set to music, musical tonality often supersedes 
lexical tone, even when explicit attempts are made to preserve the relative pitch of the tones38,39.

Our results revealed that even the most prosodic or “tonal” forms of speaking were significantly less scaled, 
on average, than the most speech-like forms of music, namely logogenic and repetition chanting. These results 
are likely due to the fact that chants, but not speech, make use of a small set of recurring pitches—or even a 
single pitch in the case of a monotonic chant—and typically elongate syllables relative to speech. This use of pitch 
elongation and repetition creates at least one stable pitch-class, resulting in the most basic form of a scale. Overall, 
our results allow for a disambiguation of the two meanings of discreteness in the acoustics literature. They reveal 
that speech may show pitch discreteness (i.e., flatness), but not pitch-class discreteness (i.e., scaledness).

Model BIC AIC Acc (%) [95% CI] p [Acc > NIR]

Hilton-Mehr
Full

Adult-directed speech
Infant-directed speech
Adult-directed song
Infant-directed song

586.3 564.2 43.6 [37.4, 50] 4.521e−7

Reduced Song
Speech 200 189 78.8 [73.2, 83.7] 5.509e−13

Ozaki-Savage

Full
Described
Recited
Song
Instrument

95.5 78.6 73.9 [61.9, 83.8] 1.687e−15

Reduced
Speech
Song
Instrument

54 41.3 91.3 [82.0, 96.7] 5.302e−11

Phillips-Brown

Logogenic
Repetition chant
Melodious logogenic
Motivic
Melogenic

291.4 268.3 42.2 [32.4, 52.3] 0.24

Overall

Full
Speech
Prosodic speech
Song
Instrument

539.9 515.7 73.8 [69.3, 77.9] 1.358e−6

Reduced
Speech
Song
Instrument

309.4 291.2 86.1 [82.4, 89.2] 2.2e−16

Table 1.  Predictive analysis results. BIC Bayesian Information Criterion, AIC Akaike Information Criterion, 
Acc Accuracy, CI Confidence Interval, p p-value, NIR no information rate.
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Our speech results fail to support Spencer’s evolutionary hypothesis that music emerged through a prosodic 
accentuation of speech. Scaledness is not the same thing as prosody, but is instead a parallel feature to it and an 
alternative means of organizing pitch during vocal communication31,40. Speech prosody and tonal languages 
operate by modulating pitch registers (e.g., high vs. low) and pitch contours (e.g., rising vs. falling), but do not 
employ recurring sets of discrete pitches, which is a characteristic feature of much music. It is important to 
note that, while a number of models of the origins of music talk about a “prosodic” precursor to music40–44, the 
prosody in this case refers to vocal emotion in a general sense and not to speech prosody from a fully-fledged 
speech capacity the way that Spencer conceived of it.

The fact that infant- and adult-directed speech are easily distinguishable to the ear may be due to more-
immediate melodic and timbral differences (e.g., pitch height and range), or even to cognitive differences, 
such as semantic salience, rather than to their underlying tonal structure. In addition, we observed only small 
differences in scaledness between Recited and Described speech in the Ozaki-Savage corpus. We speculate that 
this difference might be due to the fact that reciting the lyrics of a well-known song might prime some participants 
to implicitly incorporate features of the musical melody into their recitation. Similar to our results, Ozaki et 
al.34 observed “few major differences between lyrics recitation and spoken description, except that recitation 
tends to be slower and use shorter phrases.” Indeed, another factor that may make speech appear music-like is 
rhythm. In the same way that music’s tonal dimension makes use of pitch-class discreteness, music’s rhythmic 
dimension makes use of discreteness at the level of duration values. Future work should aim to examine how 
the discreteness of pitch and that of rhythm are related to one another across a diverse collection of song types.

High variation in scaledness across manners of musicking
In contrast to the relatively null differences observed across the various manners of speaking—covering 
conversational speech, prosodic speech, and tone-language speech—we observed strong differences among 
the different manners of creating music. This was seen at two levels. The first and most significant was the 
large difference in scaledness between instrumental music and vocal music. This was seen in the comparison 
between the Instrumental and Song categories within the Ozaki-Savage corpus, which had the important benefit 
of controlling for the melodic material, including the scale used. Such a result is consistent with our previous 
study showing a far greater imprecision in vocal production compared to instrumental production31, even when 
controlling for the musical material. The correlational analysis in Fig. 4 supported this finding by showing a 
significant negative correlation between scaledness and vocal imprecision in our song corpus. The second type 
of variation in the scaledness of music occurred within vocal music. In particular, we provided support for Sachs’ 
distinction between a more melodious type of a singing and a more speech-like form of chanting, where the 
melogenic style was more scaled than the logogenic style. An interesting intermediate case emerged in form of 
the “melodious logogenic” style, which combines a speech-driven style of chanting with a stronger adherence 
to a musical scale. Overall, the variation of scaledness for music far surpassed that for speech, even within vocal 
musics that were largely word-based.

The prevalence of imprecise singing in our ethnographic corpus—and, as far as we can tell, the Hilton-Mehr 
corpus—suggests that the ability to measure tonal structure in song is likely attenuated by imprecise singing, 
which is ubiquitous across singing styles. Although we aimed to select excerpts of each sample that excluded 
extreme pitch drift or shift, it remains the case that the scaledness of song that we present here is not that of 
highly accurate singers in ideal conditions45,46. In addition, vocal ornamentation—through portamento, vibrato, 
and melisma47—is another factor that blurs differences between pitch-classes in sung music and that reduces its 
scaledness. However, even imprecise and ornamented singing is characterized by a degree of tonal structure that 
sets it apart from speech. The predictive analysis revealed that song was reliably distinguishable from speech, 
even though nearly all of the song samples used words.

Given that our results refute Spencer’s hypothesis that musical tonality evolved from speech (either through 
prosody or lexical tone), how do we account for the evolutionary origins of scaledness? Do our results provide 
evidence for Sachs’ dual-origins model? Our corpus contained too few songs without words for us to place 
vocable singing in the context of our 5-category scheme for song. While vocable singing is prevalent in choral 
traditions cross-culturally (e.g., African Pygmy singing, native American powwow singing), it seems to be 
less common in solo singing. Further work is necessary to examine scaledness in a large enough corpus of 
vocable songs to match the quantity of the word-based songs in our current corpus. Our prediction would be 
that vocable singing would tend to be more similar to melodious singing than to logogenic chanting, although 
imprecise singing could potentially confound that difference.

Limitations
Our analytic method for measuring scaledness is, at present, limited to monophonic acoustic samples, thereby 
precluding the analyses of choral singing, instrumental music, or group speech. It is hoped that future work 
will permit the analysis of group-level performance. Next, all of our silhouette values occurred in a relatively 
small range, even though silhouette values can in principle span from − 1 to 1. Values close to − 1 would indicate 
highly overlapping clustering, while values close to zero would indicate overlapping clusters. Because we used 
k-means clustering, which by design creates disjoint sets, our clusters could not be overlapping, making negative 
silhouette values impossible. Moreover, it is unlikely that k-means clustering would fail to find some degree 
of structure in the data, especially given that the maximum silhouette solution was chosen out of ten possible 
models, making values close to zero unlikely. Therefore, the functional range for our scaledness continuum 
spanned roughly from 0.5 to 1, and the speech samples reliably had silhouette values close to the low end. 
Further work should examine how the silhouette value of each of clustering solution varies per sample. Large 
variation would indicate that there are indeed obvious clusters, causing some solutions to be markedly better 
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than others. Small variation would indicate that the data are more linear and that the clustering algorithm is 
simply searching for minor differences to inform its solution.

Along the same lines, insight may be gained from recording the run-times of the clustering algorithm, 
where run-time may approximate the algorithm’s difficulty in choosing clusters, and thus perhaps the linearity 
of the data. However, for run-times to be fairly compared across samples, the f0 lengths would first have to be 
standardized. Although we standardized f0 length within each corpus, the scaledness results were essentially 
the same as without standardization. Therefore, scaledness is not overly sensitive to the number of annotations, 
although extreme down-sampling—which would artificially introduce breaks in the f0 data—does cause 
problems. This is the main reason why we did not standardize f0 length across corpora, only within each corpus. 
The minimum length for the Phillips-Brown dataset was a fraction of that of the other two corpora.

The song dataset of Phillips-Brown was characterized by unbalanced groups, which made the 5-category 
classification of song-types more difficult than the classification of the other corpora. The low frequency of some 
song-types made training difficult and led to a very high NIR in the predictive analysis. This was unavoidable. 
The relative prevalence of singing styles varies across world regions, and some styles were simply more common 
than others in our global dataset. Despite the extremely unbalanced groups across the three corpora of the 
combined dataset (with a preponderance of song and very few instrumental samples), we still observed an 
accuracy rate of 85% in the predictive analysis. These results revealed that instrumental music is categorically 
distinct from both song and speech, since the models required relatively few tokens of instrumental music in 
order to learn to identify it. The results also revealed that, despite song and speech sharing their use of the vocal 
system for production, they were nonetheless distinguishable by their level of tonal structure. This held true even 
when songs contained words, as they did in the majority of our samples. This suggests that song is a means of 
musicalizing text through the imposition of a scale onto syllables, making song a joint function between speech 
and music (Fig. 1). Nonetheless, it is important to note that we only studied monophonic singing here and barely 
scratched the surface of the diverse world of instrumental music. There is thus much further work that needs to 
be done in applying this analysis to other samples. It should also be acknowledged that not all musics—vocal or 
instrumental—are primarily concerned with structuring pitch, and so methods for measuring the underlying 
timbral and metrical organizations should also be developed. The place of these traditions in the speech-music 
continuum requires further study.

The structure of the data presented another major limitation such that the non-normality and highly unequal 
variances complicated the multiple-comparisons testing. Although the Games-Howell test has been shown to 
maintain a satisfactory Type I error rate with unequal group sizes and variances, especially when the smallest 
group has the largest variance, its power drops markedly when performing all-pairs comparisons48. It may not 
be possible for a dataset of scaledness across the speech-music continuum to demonstrate normality or equal 
variance, given that speech seems to be minimally scaled, whereas music’s scaledness varies widely. We suggest 
that the p-values presented in the analyses be interpreted alongside the results of the predictive analysis and the 
estimated differences in means (shown with 95% confidence intervals in Extended Data Fig. 3).

Conclusions
The combination of the descriptive and prescriptive analyses supports a 3-category organization of the scaledness 
continuum, spanning from speech to song to instrumental music. The largest divide was seen between vocal and 
instrumental production, even when the melodic material was controlled for, as in the Ozaki-Savage dataset. 
Overall, the results reveal that speech shows minimal scaledness no matter how it is uttered, and that music’s 
scaledness varies widely depending on its manner of production.

Methods
Datasets
To test our hypotheses, we obtained fundamental frequency (f0) annotations for audio samples from three cross-
cultural datasets:

•	 Hilton-Mehr: A set of 1004 f0 annotations generated using Jupyter Notebooks49 to apply Mauch and Dixon’s 
pYIN algorithm50 to a subset of Hilton et al.’s51 recordings of infant- and adult-directed speech and song. For 
this dataset, we generated f0 annotations using the implementation of pYIN in both Tony and Jupyter Note-
book to ensure that the results would be comparable across datasets. Although the raw annotations produced 
in Jupyter Notebook had a lower resolution (i.e., f0 was recorded in 10-cent intervals) than those from Tony, 
the scaledness data (see the “silhouette” parameter below) were essentially the same. We used 5–15 s excerpts 
that contained one complete uttered phrase with minimal background noise, as produced by a single partici-
pant. This dataset comprised 225 samples of adult-directed speech, 205 of infant-directed speech, 285 samples 
of adult-directed song, and 289 of infant-directed song. The samples included 16 languages, spanning 11 
language families. According to our best classification using the World Atlas of Language Structures (WALS) 
online52, there were 155 samples of complex tonal languages, 90 of simple tonal languages, 739 of nontonal 
languages, and 20 samples where tonality was unknown.

•	 Ozaki-Savage: A set of 276 f0 annotations from Ozaki et al.’s53 Stage 2 registered report, which the authors 
generated by applying Mauch and Dixon’s pYIN algorithm to 76 recordings of descriptive speech, 76 of lyric 
recitation, 76 of singing, and 48 of instrumental music. These were matched samples such that each performer 
was asked to provide a recording of each type. The vocal samples included 55 languages, spanning 21 language 
families. According to our best classification using the WALS online, there were 7 vocal samples of each type 
that were uttered in complex tonal languages, 11 in simple tonal languages, 49 in nontonal languages, and 9 
where tonality was unknown. There were fewer instrumental samples of each type, but these were not includ-
ed in our language tonality analysis.
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•	 Phillips-Brown: A set of 416 f0 annotations generated by applying Tony’s implementation54 of Mauch and 
Dixon’s pYIN algorithm to recordings from our global dataset of traditional songs31. This dataset comprised 
excerpts of solo monophonic songs from indigenous and traditional cultures, spanning 10 musical-style re-
gions, as based on Lomax’s47 global classification of singing style. The distribution of languages in these re-
cordings is not known.

Song classification
For the Phillips-Brown dataset, the second author devised a multidimensional classification scheme of song-
types in the full dataset, as based on Sachs’7 primary classification of song into “logogenic” and “melogenic” 
varieties. The end result was a 5-category scheme, as shown in Extended Data Table 1. In between the two 
extremes of logogenic and melogenic are 3 newly-proposed categories. “Motivic song” is similar to melogenic, 
except that its rhythmic properties tend to be heterometric (rather than isometric), and so its phrases tend to be of 
variable lengths, interspersed with non-metric pauses. “Melodious logogenic” is similar to logogenic as a type of 
cantillation of text, except that it tends to be far more melodious (rather than monotonic), making extensive use 
of movement across scale pitches. It generally includes melismatic ornamentation in a way that pure logogenic 
does not and somewhat resembles a Classical opera “recitative” section. The last category of “repetition chant” 
typically consists of a single repeated phrase using 2–3 pitch-classes. Note that the classification scheme for song 
in Extended Data Table 1 is multidimensional even though we are only focusing on the scaledness feature in the 
current analysis.

After this 5-category scheme was proposed by the second author, the first author listened to the full dataset 
and carried out an independent rating of all of the songs. The two raters agreed on 60% of the categorizations as 
first choices; with second choices included, the agreement was 80%. All disputes were resolved by joint listening 
to the songs and coming to an agreement on every song’s classification. This resulted in a breakdown of the 
original 416 songs into 16 logogenic songs, 45 melodious logogenic songs, 42 repetition chants, 154 motivic 
songs, and 159 melogenic songs).

Acoustic analysis
For each dataset, the file with the fewest f0 annotations was found, and its length was set as the baseline f0 length 
for that dataset. For each sample in that dataset, the f0 pitch-trace was converted from Hz to cents. Spurious 
annotations (more than 2 standard deviations beyond the median) were removed, and the data were down-
sampled into evenly-spaced intervals such that the length of a sample would match the baseline. The cents 
data—originally plotted against time to form “melographs,” or visual representations of the melody—were then 
sorted from lowest to highest pitch to create a “scalograph,” which is an ordinal visual representation of the scale 
(Extended Data Fig. 1).

In order to quantify the “scaledness” of each sample, we applied automatic k-means clustering to the pitch 
profile in the scalograph using the Python package sklearn55, allowing for 2–11 clusters per sample. We used the 
parameter of “silhouette” to approximate a sample’s scaledness because it has components that intuitively map 
onto tonal discreteness: the flatness of a cluster (i.e., the extent to which the pitches within a class are similar) 
is measured by the intra-cluster distance (a), whereas the steppiness between clusters (i.e., the extent to which 
the pitch-classes are spaced apart) is measured by the nearest-cluster distance (b). A cluster’s silhouette score 
is given by 

(b−a)
max(a,b) . The overall silhouette value of a model is given by the mean silhouette score of all of the 

component clusters from the k-means analysis. We chose the maximum silhouette value (of all models from 2 
to 11 clusters) as representative of the overall scaledness of a sample. It is important to note that our measure 
of scaledness is agnostic with regard to “tonality” in the Western musicological sense of a tonic pitch and a 
hierarchical organization of scale tones. It merely describes the distinguishability of pitch-classes in a sample.

Descriptive statistical analysis
We first tested whether scaledness values differed significantly across the sample types of each dataset. Due to 
the unbalanced group sizes of the Phillips-Brown dataset, we used a one-way analysis of variance (ANOVA) with 
type-III sum of squares, followed by multiple comparisons testing using Tukey’s “honest significant difference” 
(HSD) method, with a family-wise confidence level of 0.95. Due to the unequal variances and unbalanced groups 
of the Hilton-Mehr and Ozaki-Savage datasets, we used a one-way ANOVA with type-III sum of squares and 
a White-Huber (H3) heteroscedasticity-corrected covariance matrix, followed by multiple comparisons testing 
using a Games-Howell test, with a family-wise confidence level of 0.9548,56. Tests were carried out using the R 
packages car57, rstatix58 and PMCMRplus59.

Given that we did not standardize sample length across the datasets, we mainly investigated differences 
across the categories within each dataset, not the combined dataset. However, since the scaledness results 
seemed relatively insensitive to sample length (see “Discussion” section), we tested for significant differences 
in scaledness across the overarching categories of Speech (n = 582), Song (n = 1066), and Instrumental music 
(n = 48) in the combined dataset. We also broke down the Speech category into “Speech” (Adult-directed from 
Hilton-Mehr and Descriptive from Ozaki-Savage, n = 301) and “Prosodic speech” (Infant-directed from Hilton-
Mehr and Recited from Ozaki-Savage, n = 281), and compared these categories to Song (Ozaki-Savage and 
Phillips-Brown) and Instrumental music (Ozaki-Savage) in the combined dataset. Because the overall dataset 
had unequal variance and unbalanced groups, we followed the same procedure as outlined for the Ozaki-Savage 
dataset above.

For the Hilton-Mehr and Ozaki-Savage datasets, we also tested for significant differences in scaledness 
across the various categories of language tonality in the vocal samples (excluding instrumental music from this 
analysis), using fully crossed two-way ANOVAs with type-III sum of squares (to account for the unbalanced 
group sizes) and multiple comparisons testing using Tukey’s HSD, with a family-wise confidence level of 0.95. 
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For the Phillips-Brown dataset, we also examined the correlations between scaledness and some previously-
measured properties of the samples, namely their vocal imprecision31 and the number and average spacing of 
scale tones/intervals per sample10.

Predictive analysis
To further test whether scaledness is a good marker for distinguishing categories across the speech-song 
continuum, we used the R package xgboost60 to carry out multiclass logistic classification. For each model, we 
first performed soft classification, which produced predicted classification probabilities for each test observation. 
We used these values to calculate the log-likelihood and Akaike Information Criteria (AIC) of each model. We 
then hardened the classification predictions to compare them to the ground-truth labels (i.e., the classifications 
indicated by the authors of the studies) to obtain an overall accuracy score. To determine the significance of 
the classification accuracy, we compared the model accuracy to the “no information rate” (NIR), which is the 
accuracy of a naive model that would only predict the majority class. We compared across models for each 
dataset using the AIC, where a lower value of AIC is taken as the better model.

We used scaledness as the sole predictor in the following models: (1) classifying each dataset by its own 
categories; (2) classifying each dataset into a simplified model by inspecting the confusion matrix; (3) classifying 
the combined dataset into the overarching categories of Speech, Song, and Instrumental music; and (4) classifying 
the combined dataset into the overarching categories of Speech, Prosodic Speech, Song, and Instrumental music. 
Each model was performed with a 75/25 train/test partition, split within the levels of the outcome variable 
using the R package caret61 to balance across the uneven class distributions within the splits. For each model, 
multiclass negative log-likelihood was used as the evaluation metric, and training was performed with a 
maximum boosting iteration of 10,000 and an early stopping point of 10 rounds, after which validation training 
would end if performance did not improve.

Data availability
All materials for this study are available at the following public Open Science Framework repository: ​h​t​t​p​s​:​/​/​o​s​
f​.​i​o​/​3​j​9​w​r​/​​​​​.​​
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